Not directly. The LAI‑2200C is designed to measure foliage structure, which is only one of several factors determining absorption. Also, the spectral range of the sensor does not correspond to the PAR region, so it should not be used as a PAR sensor. The diffuse non-interceptance value (DIFN) calculated by the LAI‑2200C is a direct estimate of how much diffuse sky radiation gets through the canopy, and (1 - DIFN) would be the absorbed sky radiation; but all this assumes that the foliage does not scatter radiation. Also, this neglects what happens to direct beam radiation, which is a function of solar position. The direct beam absorption could be inferred, perhaps, from the mean gap fraction measurements at the five zenith angles based on diffuse radiation, but this would still neglect the contribution of scattered radiation. Another approach is to model canopy absorption based on the canopy structure (as measured with the LAI‑2200C ), the foliage reflectance and transmittance, the reflectance of the ground, and measurements of incident total PAR and the fraction thereof that is direct beam.
The console of the LAI‑2200C includes two BNC connectors where the LI‑190 Quantum Sensor can be connected for measurement of total incident PAR.